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Abstract. Improvement of models for correct estimation of thermody-
namic properties have been a topic of many contributions in chemical
engineering. In general, parameter estimation is made with a priori for-
mulation of their functionality. In this contribution we adjust model pa-
rameters with gray-box models based on neural networks, experimen-
tal data and a frame model to be improved. The BACK equation of
state (EoS) in used to predict the compressibility factor from Pressure-
Volume-Temperature data of n-alkanes. Also, we check the consistency
of gray-box models in prediction of properties derived from BACK EoS.
The advantage of this approximation is to complement the knowledge of
a fundamental model with the capacity of neural networks for pattern
recognition. The presence of a frame model guides the optimization of
neural networks to find parameters ad-hoc to the model theory.

1 Introduction

Artificial neural networks (ANNs) have been proved to be an excellent tool to
recognize data patterns presents, cven non lincar, in a sct of data. Howcver, in
systems with many knowledge and rescarch done, use of neural networks can be
scen as a forward step in prediction but as a backward step in knowledge. The
goal of this contribution is to show a gray-box model formulation based on a de-
terministic model. neural networks and a sct of experimental data to improve the
deterministic model. Once the gray-box model formulation has demonstrate a
good performance in prediction and has been probed its consistency with funda-
mental principles. we could use the model with some confidence to extrapolate.

Rescarch in thermo-physical properties of fluids and its modeling has been an
arca of intensive work. The most successful engineering thermodynamics equa-
tions of state arc cmpirical, like Redlich-Wong, Peng-Robinson, Soave and more.
In recent years several equation have emerged with a frame work based on fun-
damental principles. This kind of equations usc a better molecular description
or information of molecular dynamics. However, simplifications from thcory arc
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made when a model is constructed. Therefore. errors in prediction increased
when the model is used in systems different from ones the model has been made.
Then, the improvement of prediction of Auid properties still been an active topic
in thermodynamics.

In tl‘lis work. we chose the BACK EoS [6,7] as the frame model to be im-
proved in its paramecter functionality. Experimental PVT data for the family
of n-alkancs from methanc to n-decanc are used to predict the comprcssibilitlv
factor (Z). BACK EoS consider two principal deviation effects from idealits;,
an effect product of repulsive forces and the other from attractive forces. Tﬁe
rcpu1§ivc term relics in perturbation theory applied to convex bodics and the at-
tractive term comes from an adjusted expansion in serics to results of molecular
simulation of Argon with a square-well potential. The convex bodics arc allowed
to have deviation from sphericity by mean of an anisotropy paramcter (), the

two remaining parameters arc a hard-core-volume related paramcter ( V”) and
0
the energy potential (%)

Neural networks can be used as a “black box” model. in this kind of model a
data vector is feed to the neural net and its paramecters arc trained to recognize an
output data vector. That kind of approximation only assures the best statistical
sct of ncural network parameters to this task without insights of rclationships
morc than cxistent theory. Extrapolate these models can not be successful at
all and just serve to predict the propertics of compounds used in training. On
the contrarics, a “gray-box™ model usecs the theory cxistent and just try to
complement those fails, therefore the model can be more general. A strategy
is nccessary to achicve this goal. An iterative procedure is applicd to make a
diagnosis on which sct of variables is the best candidate to drive the modeling
without degencrate the frame model (BACK EoS). In the next scctions, we
present the BACK EoS and the details of the gray-box formulation and finally
discussion and concluding remarks.

2 Equation of State Back

Among the vast number of equation of state, in recent years some EoS are
cmerged with a better fundamental description of fluids with its respective in-
creasc on complexity like BACK, PHCST. SAFT, PC-SAFT. The BACK EoS
is not cxcessively complex and is oriented to alkancs; with its original param-
cters shows good agrecement with cexperimental data until n-butane, and the
average deviation increase as the number of carbons increase. Also. deviation
from compressibility factor grows with density, that is a common fail in many
EoS becausc are constructed around deviation from ideal gas (V' — o), so for
specific volumes of liquid the crrors arc big.

Then, we have two facts that lead us to implement our strategy based on
necural networks to improve the parameter cstimation of an EoS previously con-
structed. The BACK as any EoS nceds of temperature and specific volume be-
sides its characteristics paramcters to calculate the compressibility factor. The
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BACK cquation[6.7] is an augmented van der Waals EoS of the form:

PV
SREES S e
RT 2 (1)
For the repulsive term (Z"). the cquation of Boublik is used:
7h 1+ (3a—2)+ gaj 6—);’30 +1)€2 — a?83 2)

where a is the anisotropy parameter and & is the density of the fluid given by:

70
€= 0.74048%— (3)

Here V is the specific volume and V0 the molecular hard core volume. The
Boublik cquation is the result from apply perturbation thcory on a fluid with
molecules as convex bodies. For the attractive term (Z¢) we usc the cquation

derived by Alder ([14]):

4 9 70 M
A Z Z M Dy (%)N (%—/—) (4)
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where T is the temperature, (i) is the potential energy and Dy s arc universal

constants.

3 Neural Network Gray-Box Models

The central part of succeed on this parameter cstimation approach has to do
with the use of the so called gray-box. Our definition of gray-box modecl involves
a deterministic model and one or more neural networks, the topology or connce-
tivity between those clements is defined by the purpose of correction. Once the
topology is defined, we construct several gray-box models starting from a modecl
with “minimal knowledge”. That means we use the information available in data
without take into account the model theory. Therefore, after training the model
cvolves incorporating information from theory and from observed of analysis to
the model itsclf, to be trained again until the goal is rcached.

The kind of neural nctworks used are feedforward with four layers, also knows
as backpropagation ncural networks. Each necuron, in feedforward networks, is
connected with all the neurons in the previous layer via a weighted conncction,
which only pass information to all neurons in the next layer, avoiding lateral or
recurrent connections. Also cach ncuron has a bias parameter that contribute
to the ncuron output. The problem to solve is to find the weights and bias of
the neural networks. They are found by solving a least-squares problem using
conjugatce gradient techniques. Such ANN architecture is the most common and
its configuration and training (solution of the least-squares problem) have been
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described in detail clsewhere (c.g. [15]). The input layer just drives the PVT
information to the neural network, two hidden layers functions as the non-lincar
part of the model and the output layer computes the predicted variables. In our
casc, the parameter(s) to be included in the fundamental modecl.

The models based on neural networks and a sct of experimental data assurcs
the patter recognition between the input-output vectors [19], but if we do not
have an additional strategy then we can not extract relevant information of the
system. On the contrarics, a “gray-box” model uscs the theory existent and just
try to complement those fails, thercfore the model can be extrapolated with more
confidence. A strategy is nccessary to achieve this goal. An iterative procedure
is applied to make a diagnosis on which sct of variables is the best candidate to
drive the modeling without degenerate the frame model (BACK EoS)

The scheme of the first gray-box model (named ANNI for short) is showed
in Figure 1. The topology with three neural networks obey to avoid cross inter-
action among the sclected dependency of each EoS parameters and the inputs to
the nets. As mentioned previously, first we use information without consider the
basis of BACK EoS, therefore in this model we use temperature, specific volume
and the number of carbons as independent variables. One ncural network uses
the number of carbons to recognize the anisotropy factor. because this param-
cter is only function of molecular geometry and it is considered independent of
temperature. In BACK's formulation, V° is considered temperature dependent.
however in this model we use density as input information to the sccond ANN
and finally for ¥ paramcter the temperature is the independent variable. This

Fig. 1. Scheme of the first gray-box model, ANNI1.

modecl was trained with data of methane, cthance and n-decance to observe if the
corrections arc consistent for all data. The model is training upon convergence
on compressibility factor prediction (Z). The training is via minimizati(?n of
the square crror between the experimental compressibility factor and predicted
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(energy function, E):

E=Y (20, - Zpha) (5)

np

where np indexes the training vectors. The necural networks used have one ncuron
in the input layer (PVT information), onc neuron in the output layer (BACK
and cight ncurons in cach hidden layer. The speed, final valuc
of cnergy function and values of the final sct of weights and thresholds arc not
as relevant as the values and behavior of the parameters of BACK EoS from
the outputs neurons. The training is achicved using the backpropagation rules.
Such rules are straightforwardly obtained using the chain rule to calculate the
derivative of the encrgy measure with respect to the ANN paramcters. For the
first model, the derivatives of the energy function with respcct of the ncural
networks parameters (W and @) required for the backpropagation of the crrors.

EoS parameter)

have the general form:

dE dZ dP
-d_i? = "(Zc:rp & Zprcd) ('d_P' x EW) (6)
where P stands as an EoS parameter. The first part of the derivative g—%— can bc
dP

explicitly calculated from the BACK cquation formulation and the sccond, 57,
is simply the derivative of onc of the network outputs with respect to onc of the
network paramcters. The derivative of compressibility factor with respect of the

anisotropy paramcter (a) is:
0Z _ 3¢+ (6a — 3) €2 — 2a&® o
da (T 0

For the close-packed volume parameter ( 1;0) :
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For the potential energy ()

d:. 19 5 ~ M
22 -3 ()" () (7) g
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A similar procedure is used for the remaining gray-box models. The sccond
model presented in Figure 2, named ANN2, takes into account morc information
of BACK thcory. We known that both parameters, V? and u/k, arc function
of temperature. Finally, in Table 1 we present the full range of conditions of
experimental data used in training and cross validation.
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Fig. 2. Scheme of the second gray-box model, ANN2.

T P p
K bar l",'—"ﬁ- x 10°

CH, 119.4 - 423.15 [16.3 — 291.7[ 0.0239 — 35
C2Hg [248.15 — 473.15[11.7 — 410.2| 0.0313 — 16
C3Hs |285.9 —510.93 | 1.01 — 689 | 0.0240 — 13
CaHp [294.26 — 394.26] 1.01 — 8.61 | 0.0102 — 3

CsHyz [298.15 — 573.15] 1.37 — 741 0.0240 — 9.72
C7Hig |285.25 — 313.15] 19.3 — 784 [0.0670 — 7.95
CsHis | 298.15— 548 | 20.2 — 982 [0.0352 — 7.48
CiroH2z| 294 - 673 15.2 - 1500| 0.95 — 4.8

Table 1. Range of pressure, density and temperature for the experimental database
(16].

4 Results and Discussion

A sct of 2000 PVT data from methane to n-decane, taken from [16], was the
databasc used. All data belongs to onc phase (gas or liquid) of purc com-
pounds. Table 1 summarizes the experimental conditions of data. The data arc
distributed above and below the critical conditions for cach compound. This
databasc was divided in a training set with 80% of cach compound sct and
the rest for cross validation. Every gray-box model was trained five times with
random initial condition to validatc the model. The results showed are represen-
tative of these trainings, the goal is the behavior observed not the final values
of ncural networks parameters or the number of conjugated gradient iterations
neceded to reach the final crror. Even when the parameters of EoS are molecular
propertics and arc knowns for some molecules, in common practice arc consid-
cred as cmpirical parameters from a statistical fit of experimental data. Then,
the fitting procedurc absorbs the crrors of model by idealitics or simplifications.
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For the first gray-box model (ANN1), the Figure 3 shows the comparison of
the experimental and predicted compressibility factor with the modecl and the
original BACK EoS for methane, cthane and n-decanc; note that for mecthanc
and cthanc the BACK EoS is very accurate. But for n-decanc, were the predic-

b

o ok 4
Z lr - - - -
R /
[ 4 S i ~
(‘!,y— - asp- By
/ . .
0 1 1 E 1 | 15 4 ¢ et Ay 60, T Pt |
% a5t s 2 ° %

r 2 i 7oy 2y

Fig. 3. Comparison of the experimental and predicted compressibility factor with the
ANNI1 gray-box model (o) and the original BACK EoS (x) for a) methane, b)ethane

and c) n-decane.

tions arc extremely worse, with almost cvery data, the predictions arc improved
significantly by the addition of ncural nctworks. However, the analysis of the
parameters obtained at the outputs of the ncural networks is the indicator of
succeed for the gray-box model. The anisotropy parameter (a) in Table 2 shows
a value below but near unit for methanc as was imposed in the original fitting.
For cthane. when trained with onc isotherm as methane, the « values arc greater

[ [ T.K |aanm [[aBack]
CH, 180 0.98690]( 1.0000
C2Hg 273 0.99579|| 1.0370

298 1.04466

323 1.02646

273,298, 323(0.97474
Ch10H22|294, 523, 653(3.29909([1.13490

Table 2. Predicted anisotropy parameter for several training sets with ANN1 gray-box
model.

than o for methanc; finally for n-decanc the a valuc is too large to the “physical”
meaning of the parameter. The close-packed volume parameter (Vo), as showed
in Figurc 4, bchaves independent of temperature as the ANN1 model was con-
structed. all predictions converge to one function in density. However, the scarch
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Fig. 4. Packed volume of convex bodies with the gray-box model ANNT1 for ethane.

of a function to represent this behavior scems not to be a viable option. That
observation comes from the frame of BACK EoS. if we add the density (volume)
in the calculus of the close-packed volume parameter that implics a (-11.'(111:,:,'(,‘ in the
structurc of BACK EoS which can degencrate the calculus of another properties
derived. such as entropy or enthalpy. For the potential cnergy (%) the behavior
is smooth and similar to proposced in theory as function of temperature. For the
sccond gray-box model (ANN2), a change in dependency of the sccond neural
network in ANNT model is made. then we get the ANN2 model. Aftor training,
the anisotropy parameter (Table 3) is consistent with the principle of congruence
which increase its value as the number of carbons increase. However., is to note
the high value for a of n-decane which is reflected in the behavior of the two
remaining parameters. The close-packed volume parameter (V9. as showed in

QANN2

QBACK

CyHg

0.9992124

1.037

C3Hg

1.0164985

1.041

CsHyz

1.0348073

1.0566

CroHa2

6.128722

1.1349

Table 3. Predicted anisotropy parameter for ANN2 gray-box model.

Figure 5. behaves consistent from methane and n-propanc with a tendency to
decrease with temperature. From n-pentane the dependency from temperature
shows a maxima and for n-decance we found negative values which are “physi-
cally” incousistent. Also, for the potential energy () the behavior is consistent
from methane and n-propanc. for n-pentanc some irregularitics arc presented and
for n-decanc. positive values are found but the dependence with temperature is
inverted with respect BACK EoS theory. Finally we present, as a consistency
test of the ANN2 gray-box model, the calculus of the vapor pressure from BACK
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Fig. 5. Comparison of the packed volume of convex bodies with the ANN2 gray-box
model (o) and the original BACK EoS (x) for ethane, propane, n-pentane and n-decane.

EoS with the Maxwell’s rule of equal areas. This method implies that:

£ ] Veap =
PR V“q) = [ PpackdV (10)
‘/liq

In Figure 7 we show the agreement of the ANN2 gray-box model to predict
the vapor pressure, with some discrepancies for n-decane. Note, the tendency is
captured by the model but as the number of carbons increased the errors grows

too.
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Fig. 6. Comparison of the potential energy with the ANN2 gray-box model (o) and
the original BACK EoS (x) for ethane, propane, n-pentane and n-decane.
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Fig. 7. Comparison of vapor pressure predicted with ANN2 model and experimental
data.

5 Summary and Conclusions

We had shown an extended application of gray-box neural network in diagnosis
and improvement of BACK EoS prediction of compressibility factor and some
insight in its availability to predict derived propertics. The strategy followed
shows how discriminate a viable set of system variables to fit the parameters of
BACK EoS. Additional effort is necessary to substitute the neural(s) network(s)
with an empirical compact form that fits the neural networks behavior. This
could leads to a better deterministic model with some empirical corrections de-
rived from “what the models needs not what we want to add”. However, some
issucs of this approach has to be mentioned. The optimization of the model is
unconstrained and some rigid assumptions of model parameters can not been
assured from the beginning. In fact, the three parameters must be always pos-
itive and in our approach that condition was suggested to follow by means of
scaling the inputs and outputs in some expected range of values. Currently, we
are conducting several related and complementary efforts. We are working in
refining the models here presented with some insights of iinprovement. Also. we
arc looking into the formulation of corrections for more complex cquations of
state like SAFT for associating compounds (alcohols). where four paramcters
arc needed by the equation. Also. adding constraints in this kind of gray-box
models because many physical systems are subjects to constraints.
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